474 research outputs found

    The lumbosacral angle does not reflect progressive tethered cord syndrome in children with spinal dysraphism

    Get PDF
    Purpose: Our goal was to validate the hypothesis that the lumbosacral angle (LSA) increases in children with spinal dysraphism who present with progressive symptoms and signs of tethered cord syndrome (TCS), and if so, to determine for which different types and/or levels the LSA would be a valid indicator of progressive TCS. Moreover, we studied the influence of surgical untethering and eventual retethering on the LSA. Methods: We retrospectively analyzed the data of 33 children with spinal dysraphism and 33 controls with medulloblastoma. We measured the LSA at different moments during follow-up and correlated this with progression in symptomatology. Results: LSA measurements had an acceptable intra- and interobserver variability, however, some children with severe deformity of the caudal part of the spinal column, and for obvious reasons those with caudal regression syndrome were excluded. LSA measurements in children with spinal dysraphism were significantly different from the control group (mean LSA change, 21.0° and 3.1° respectively). However, both groups were not age-matched, and when dividing both groups into comparable age categories, we no longer observed a significant difference. Moreover, we did not observe a significant difference between 26 children with progressive TCS as opposed to seven children with stable TCS (mean LSA change, 20.6° and 22.4° respectively). Conclusions: We did not observe significant differences in LSA measurements for children with clinically progressive TCS as opposed to clinically stable TCS. Therefore, the LSA does not help the clinician to dete

    Asymmetric Strand Segregation: Epigenetic Costs of Genetic Fidelity?

    Get PDF
    Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric—but not symmetric—strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease

    Budding Yeast Dma Proteins Control Septin Dynamics and the Spindle Position Checkpoint by Promoting the Recruitment of the Elm1 Kinase to the Bud Neck

    Get PDF
    The first step towards cytokinesis in budding yeast is the assembly of a septin ring at the future site of bud emergence. Integrity of this ring is crucial for cytokinesis, proper spindle positioning, and the spindle position checkpoint (SPOC). This checkpoint delays mitotic exit and cytokinesis as long as the anaphase spindle does not properly align with the division axis. SPOC signalling requires the Kin4 protein kinase and the Kin4-regulating Elm1 kinase, which also controls septin dynamics. Here, we show that the two redundant ubiquitin-ligases Dma1 and Dma2 control septin dynamics and the SPOC by promoting the efficient recruitment of Elm1 to the bud neck. Indeed, dma1 dma2 mutant cells show reduced levels of Elm1 at the bud neck and Elm1-dependent activation of Kin4. Artificial recruitment of Elm1 to the bud neck of the same cells is sufficient to re-establish a normal septin ring, proper spindle positioning, and a proficient SPOC response in dma1 dma2 cells. Altogether, our data indicate that septin dynamics and SPOC function are intimately linked and support the idea that integrity of the bud neck is crucial for SPOC signalling

    Obesity and incidence of cancer: a large cohort study of over 145 000 adults in Austria

    Get PDF
    We investigated the relation of overweight and obesity with cancer in a population-based cohort of more than 145 000 Austrian adults over an average of 9.9 years. Incident cancers (n=6241) were identified through the state cancer registry. Using Cox proportional-hazards models adjusted for smoking and occupation, increases in relative body weight in men were associated with colon cancer (hazard rate (HR) ratio 2.48; 95% confidence interval (CI): 1.15, 5.39 for body mass index (BMI) ⩾35 kg m−2) and pancreatic cancer (HR 2.34, 95% CI: 1.17, 4.66 for BMI>30 kg m−2) compared to participants with normal weight (BMI 18.5–24.9 kg m−2). In women, there was a weak positive association between increasing BMI and all cancers combined, and strong associations with non-Hodgkin's lymphomas (HR 2.86, 95% CI: 1.49, 5.49 for BMI⩾30 kg m−2) and cancers of the uterine corpus (HR 3.93, 95% CI: 2.35, 6.56 for BMI⩾35 kg m−2). Incidence of breast cancer was positively associated with high BMI only after age 65 years. These findings provide further evidence that overweight is associated with the incidence of several types of cancer

    Role of Cyclin B1/Cdc2 Up-Regulation in the Development of Mitotic Prometaphase Arrest in Human Breast Cancer Cells Treated with Nocodazole

    Get PDF
    Background: During a normal cell cycle, the transition from G 2 phase to mitotic phase is triggered by the activation of the cyclin B1-dependent Cdc2 kinase. Here we report our finding that treatment of MCF-7 human breast cancer cells with nocodazole, a prototypic microtubule inhibitor, results in strong up-regulation of cyclin B1 and Cdc2 levels, and their increases are required for the development of mitotic prometaphase arrest and characteristic phenotypes. Methodology/Principal Findings: It was observed that there was a time-dependent early increase in cyclin B1 and Cdc2 protein levels (peaking between 12 and 24 h post treatment), and their levels started to decline after the initial increase. This early up-regulation of cyclin B1 and Cdc2 closely matched in timing the nocodazole-induced mitotic prometaphase arrest. Selective knockdown of cyclin B1or Cdc2 each abrogated nocodazole-induced accumulation of prometaphase cells. The nocodazole-induced prometaphase arrest was also abrogated by pre-treatment of cells with roscovitine, an inhibitor of cyclin-dependent kinases, or with cycloheximide, a protein synthesis inhibitor that was found to suppress cyclin B1 and Cdc2 up-regulation. In addition, we found that MAD2 knockdown abrogated nocodazole-induced accumulation of cyclin B1 and Cdc2 proteins, which was accompanied by an attenuation of nocodazole-induced prometaphase arrest. Conclusions/Significance: These observations demonstrate that the strong early up-regulation of cyclin B1 and Cdc2 contributes critically to the rapid and selective accumulation of prometaphase-arrested cells, a phenomenon associate

    Pathways to a cancer-free future: a protocol for modelled evaluations to minimise the future burden of colorectal cancer in Australia.

    Full text link
    INTRODUCTION:With almost 50% of cases preventable and the Australian National Bowel Cancer Screening Program in place, colorectal cancer (CRC) is a prime candidate for investment to reduce the cancer burden. The challenge is determining effective ways to reduce morbidity and mortality and their implementation through policy and practice. Pathways-Bowel is a multistage programme that aims to identify best-value investment in CRC control by integrating expert and end-user engagement; relevant evidence; modelled interventions to guide future investment; and policy-driven implementation of interventions using evidence-based methods. METHODS AND ANALYSIS: Pathways-Bowel is an iterative work programme incorporating a calibrated and validated CRC natural history model for Australia (Policy1-Bowel) and assessing the health and cost outcomes and resource use of targeted interventions. Experts help identify and prioritise modelled evaluations of changing trends and interventions and critically assess results to advise on their real-world applicability. Where appropriate the results are used to support public policy change and make the case for optimal investment in specific CRC control interventions. Fourteen high-priority evaluations have been modelled or planned, including evaluations of CRC outcomes from the changing prevalence of modifiable exposures, including smoking and body fatness; potential benefits of daily aspirin intake as chemoprevention; increasing CRC incidence in people aged <50 years; increasing screening participation in the general and Aboriginal and Torres Strait Islander populations; alternative screening technologies and modalities; and changes to follow-up surveillance protocols. Pathways-Bowel is a unique, comprehensive approach to evaluating CRC control; no prior body of work has assessed the relative benefits of a variety of interventions across CRC development and progression to produce a list of best-value investments. ETHICS AND DISSEMINATION:Ethics approval was not required as human participants were not involved. Findings are reported in a series of papers in peer-reviewed journals and presented at fora to engage the community and policymakers

    Exploration of neural correlates of movement intention based on characterisation of temporal dependencies in electroencephalography

    Get PDF
    Brain computer interfaces (BCIs) provide a direct communication channel by using brain signals, enabling patients with motor impairments to interact with external devices. Motion intention detection is useful for intuitive movement-based BCI as movement is the fundamental mode of interaction with the environment. The aim of this paper is to investigate the temporal dynamics of brain processes using electroencephalography (EEG) to explore novel neural correlates of motion intention. We investigate the changes in temporal dependencies of the EEG by characterising the decay of autocorrelation during asynchronous voluntary finger tapping movement. The evolution of the autocorrelation function is characterised by its relaxation time, which is used as a robust marker for motion intention. We observed that there was reorganisation of temporal dependencies in EEG during motion intention. The autocorrelation decayed slower during movement intention and faster during the resting state. There was an increase in temporal dependence during movement intention. The relaxation time of the autocorrelation function showed significant (p < 0.05) discrimination between movement and resting state with the mean sensitivity of 78.37 ± 8.83%. The relaxation time provides movement related information that is complementary to the well-known event-related desynchronisation (ERD) by characterising the broad band EEG dynamics which is frequency independent in contrast to ERD. It can also detect motion intention on average 0.51s before the actual movement onset. We have thoroughly compared autocorrelation relaxation time features with ERD in four frequency bands. The relaxation time may therefore, complement the well-known features used in motion-based BCI leading to more robust and intuitive BCI solutions. The results obtained suggest that changes in autocorrelation decay may involve reorganisation of temporal dependencies of brain activity over longer duration during motion intention. This opens the possibilities of investigating further the temporal dynamics of fundamental neural processes underpinning motion intention

    Cohesin Is Dispensable for Centromere Cohesion in Human Cells

    Get PDF
    BACKGROUND: Proper regulation of the cohesion at the centromeres of human chromosomes is essential for accurate genome transmission. Exactly how cohesion is maintained and is then dissolved in anaphase is not understood. PRINCIPAL FINDINGS: We have investigated the role of the cohesin complex at centromeres in human cells both by depleting cohesin subunits using RNA interference and also by expressing a non-cleavable version of the Rad21 cohesin protein. Rad21 depletion results in aberrant anaphase, during which the sister chromatids separate and segregate in an asynchronous fashion. However, centromere cohesion was maintained before anaphase in Rad21-depleted cells, and the primary constrictions at centromeres were indistinguishable from those in control cells. Expression of non-cleavable Rad21 (NC-Rad21), in which the sites normally cleaved by separase are mutated, resulted in delayed sister chromatid resolution in prophase and prometaphase, and a blockage of chromosome arm separation in anaphase, but did not impede centromere separation. CONCLUSIONS: These data indicate that cohesin complexes are dispensable for sister cohesion in early mitosis, yet play an important part in the fidelity of sister separation and segregation during anaphase. Cleavage at the separase-sensitive sites of Rad21 is important for arm separation, but not for centromere separation
    corecore